

CALICUT UNIVERSITY – FOUR-YEAR UNDER GRADUATE PROGRAMME (CU-FYUGP)

BSc CHEMISTRY

Programme	B.Sc Chemistry								
Course Title	PHYSICAL PROPERTIES OF SOLUTIONS, GASES AND								
	COLLOIDS								
Type of Course	MINOR								
Semester	II								
Academic Level	100 - 199								
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours				
(A) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		per week	per week	per week					
	4	3	-	2	75				
Pre-requisites	1. Fundamentals of	1. Fundamentals of Gases and Liquids							
	2. Colloids – Definition and classification								
	3. Basic knowledge in analytical principles								
Course Summary	1. This course	e provide the	students a tl	norough know	ledge about various				
	properties of gases and liquids								
	2. This course aims to develop an idea about the applications of								
	colloids	colloids							
	3. This course also aims to develop proficiency in qualitative analysis and								
	to familiar	to familiarize physical chemistry experiments							

Course Outcomes (CO):

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO 1	To explain the characteristics of gases.	U	F	Instructor-created exams / Quiz /Assignment
CO 2	To analyse the intermolecular attractions and explain the properties of liquids	An	С	Instructor-created exams / Quiz /Assignment
CO 3	To evaluate the behaviour of solutions	Е	С	Instructor-created exams / Quiz /Assignment
CO 4	To apply the theories of different states of matter and understand their implications.		F	Instructor-created exams / Quiz /Assignment

5	colloids in chemistry	U	(1	Instructor-created exams / Quiz /Assignment
6	To perform qualitative analysis of cations and determine physical constants	Ар	P	Lab work

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Detailed Syllabus:

Module	Uni	Hrs (75)	Marks	
1		Solutions and Colligative Properties	15	32
	1	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	2	Kinds of solutions —Solubility of gases in liquids — Henry's law and its applications	2	
	3	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	4	Colligative properties – Qualitative treatment of colligative properties – Relative lowering of vapour pressure – Elevation of boiling point, – Depression in freezing point – Osmotic pressure – Reverse osmosis and its applications	3	
	5	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	6	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	7	Applications of liquid crystals.	1	
I		10	22	
	8	Characteristics of gases	1	
	9	Postulates of kinetic theory of gases	2	
		Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3	

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	11	Collision number Mean free path Collision diameter	1	
	12	Viscosity of gases, including their temperature and pressure dependence,	J	
	13	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
111		Ideal and Real Gases	10	22
	14	Behaviour of real gases - Deviation from ideal behaviour Compressibility factor	3	
	15	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) - Expression of van der Waals equation in virial form and calculation of Boyle temperature	4	
	16	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1	
	17	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) – Relationship between critical constants and van der Waals constants.	2	
IV		Colloids	10	22
	18	True solution, colloidal solution and suspension. Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples.	2	
	19	Purification of colloids by electrodialysis and ultrafiltration	2	
	20	Properties of colloids: Brownian movement – Tyndall effect – Electrophoresis.	2	
	21	Origin of charge and stability of colloids – Coagulation - Hardy Schulze rule – Protective colloids - Gold number. Emulsions.	2	
	22	Applications of colloids: Delta formation, medicines, emulsification, cleaning action of detergents and soaps.	2	
V		Practical	30	
	A mi	nimum of seven experiments must be done. Out of the seven riments, one is to be open-ended which can be selected by the		

1	 Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation. NH₄¹, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 	25	
2	Open ended experiments—Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) Refractometry experiments etc.]	5	

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- 5. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 6. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 7. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	01	02	O3	04	O5	O6							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO	2				2		1						
5													
CO			2		2		1				1		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		1
CO2	✓	/		1
CO3	✓	1		1
CO4	✓	1		1
CO5	✓	/		1
CO6	1	1	1	